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Thus, the Amaryllidaceae alkaloid haemanthidine (1) is 
available in 2.3% overall yield via a linear synthetic sequence that 
involves only 12 chemical operations from commercially available 
piperonal. Further extensions of this and related methodologies 
in the alkaloid field are in progress and will be reported in due 
course. 
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A group of dinoflagellate toxins represented by saxitoxin (1) 
have been extensively investigated because of their occurrences 
in edible shellfish and their importance as pharmacological tools.1"3 
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However, only very limited knowledge is available regarding the 
biosynthetic origin of the unique tricyclic systems having per-
hydropurine rings.4 In fact, such compounds as purine nucleo­
tides,5 C7 sugars,6 or arginine3'7 were implicated as possible 
precursors, but actual feeding studies have been severely impeded 
by the nonheterotrophic nature of the photosynthetic toxin-pro­

ducing dinoflagellates, which resist the utilization of exogeneous 
organic compounds.6 After many unsuccessful feeding experiments 
with various amino acids and other plausible precursors, we de­
cided to try feeding small simple molecules, which might penetrate 
more easily into the system. In an earlier experiment3 feeding 
[2-13C] glycine to a culture of Gonyaulax tamarensis resulted in 
the enrichment of all carbons in isolated gonyautoxin II (2)8 but 
extra enrichment was observed with C-Il and C-12. This rather 
unusual enrichment of the two neighboring carbons from the 
single-labeled precursor was explained by assuming that glycine 
was incorporated into a-ketoglutarate via glyoxalate-TCA cycle 
pathway.3 Since a-ketoglutarate is a precursor of arginine and 
related compounds, the result was considered to support the ar­
ginine precursor theory of the toxins (Scheme Ia).3,7 

Feeding of [1,2-13C] acetate to G. tamarensis also resulted in 
the modest enrichment of all carbons, but in this case extra en­
richment was observed with C-5 and C-6 gonyautoxin II (2) and 
neosaxitoxin (3).9,10 This enrichment of the two adjacent carbons, 
C-5 and C-6, by one acetate unit as indicated by the coupling 
pattern was in clear contradiction to the arginine precursor theory 
in which C-5 must come from C-I of arginine (Scheme Ia). The 
experiment was further repeated using a toxic strain of Aphan-
izomenon flos-aquae, a blue-green alga, which had been reported 
to produce neosaxitoxin and other saxitoxin analogues.11 We 
confirmed again the incorporation of [l,2-13C]acetate into C-5 
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Figure 1. 13C NMR spectra of neosaxitoxin (3) isolated from Aphani-
zomenonflos-aquaefed with [l,2-13C]acetate (a), [2-13C]acetate (b), and 
[2-13C,2-15N]ornithine (c). 

and C-6 in isolated neosaxitoxin, but additionally we could observe 
the lesser incorporation of another acetate unit into C-10 and C-11 
(Figure la). '2 The orientations of the incorporated acetate units 
were determined by feeding 2-13C single-labeled acetate, which 
resulted in the enrichment of C-6 and C-Il (Figure lb). The 
results were totally unexpected and do not conform to any bios-
ynthetic pathways previously postulated for these toxins. To 
accommodate the new findings with our previous experimental 
results, we now propose a new pathway in which the key step is 
the Claisen-type condensation of an acetate unit or its derivative 
to the amino group bearing a-carbon of arginine or an equivalent 
and a subsequent loss of the carboxyl carbon and imidazole ring 
formation on the adjacent carbonyl carbon (Scheme Ib).14 In 

(12) A. flos-aquae was cultured in ASM-I medium without soil extract 
(total 40 L) and was fed on the eighth day, and the cells were harvested by 
centrifugation after 10 days. Toxins were separated as previously described,10 

and neosaxitoxin (ca. 4 mg) and a small amount of saxitoxin were obtained. 
(13) The measurements were done in D2O at 125.7 MHz, and the follow­

ing data were recorded: 13C NMR S 32.4 (C-Il, / = 34 Hz), 43.1 (C-10, J 
= 34 Hz), 56.1 (C-5, J = 37 Hz), 60.4 (C-13), 63.8 (C-6, J = 37 Hz), 81.4 
(C-4), 98.0 (C-12), 157.5, 158.2, and 158.4 (C-2, C-8, and C-14). C-5 and 
C-6 are both methine carbons having very close chemical shifts. The as­
signment of these crucial signals was unequivocally established by heteronu-
clear decoupling9 and also confirmed by the carbon connectivity study of 
uniformly enriched neosaxitoxin prepared by 13CO2 feeding (unpublished 
results). 
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such a scheme, the C-2 and a-amino group of arginine or its 
precursors should be still incorporated into the toxin molecule in 
intact form. Thus we prepared 2-13C,2-15N double-labeled or­
nithine, the direct biosynthetic precursor of arginine, from diethyl 
[2-13C] malonate (99% enrichment) and potassium [15N]phthal-
imide (99% enrichment) according to the procedure described by 
Martinkus et al.15 and fed it to a culture of toxin-producing 
Aphanizomenon flos-aquae.16 Neosaxitoxin (3) was isolated and 
subjected to 13C NMR measurement.17 A distinct enrichment 
was observed with C-4, whose signal appeared as a clear doublet 
(J = 9.1 Hz)18 due to a spin-spin coupling with the neighboring 
nitrogen (Figure Ic). The result, concurrently with the previous 
observation that [l-13C]-arginine or [l-13C]ornithine feedings did 
not result in specific enrichment,6 provides strong support for the 
newly proposed pathway. 

Condensations of acyl groups with a-amino acids have some 
precedents. A well-known example is the condensation of succinate 
with glycine to form 5-aminolevulinate in porphyrin biosynthesis. 
The most recent and more direct analogy is found in the bio­
synthesis of antibiotics arphamenine A and B, which proceeds 
through the condensation of acetate to the a-position of arginine 
and subsequent decarboxylation.19 The new pathway also involves 
the differential uptake of acetate, which explains the observed 
disparity of the two incorporated acetate units. 

This work establishes the origins of all the carbons in the toxin 
ring system. Regarding the origin of an extra carbon, C-13, 
feeding experiments with precursors considered to be a general 
source of C1 units have so far failed to effect the special enrich­
ment, and it is conceivable that C-13 was derived from CO2 at 
an earlier stage via malonate. 
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